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We find that the RMS wave height (square root of the potential energy) rather than 
peak-to-peak wave height is a better experimental and analytic criterion for determin- 
ing when a regular, two-dimensional deep-water wave will break. A spectral algorithm 
for two-dimensional potential flow is developed and used to compare breaking onset 
criteria for energy input from (i) converging sidewalls, (ii) a submerged disturbance, 
and (iii) wave focusing. We also find that wave-breaking criteria (potential energy 
or the more classical peak-to-peak wave height) are a function of the rate of energy 
input, Large plunging waves occur when energy input rates are large. As energy 
input rates become smaller there is a smooth transition to smaller spilling waves. The 
various energy input methods show similar breaking trends in the limit as the energy 
input rate becomes small - waves break when the potential energy becomes approx- 
imately 52% of the energy for the most energetic Stokes wave, with the formation 
of a singularity immediately before the crest. The effects of wave modulation and 
reflection are briefly discussed and shown not to affect the potential energy breaking 
criterion significantly. The experimental scatter of the RMS wave height is shown to 
be half that of wave steepness during incipient breaking in wave packets. 

1. Introduction 
The ocean wave energy spectra and the surface hydrodynamics of ship wakes are 

strongly affected by breaking waves, especially at the bow and in the near wake. 
Breaking waves are usually classified into two types: plunging breakers (with a large 
degree of overturning) and spilling breakers (with white water only near the crest). 
Plunging breakers are an important factor in the overturning of ships in rough seas, 
and they often form continuously at the bow of a ship, producing bubbles and foam 
that strongly affect the signature of a ship wake. Spilling breakers are more common 
in the open ocean (owing to wind) and in breaking wave experiments; they also occur 
in the near-ship Kelvin wave pattern. 

A recent discussion of ship wake hydrodynamics and the related remote sensing 
issues is given by Reed et al. (1991), and extensive summaries of breaking wave 
experiments are available (Rapp & Melville 1990; Bonmarin 1989; Kjeldsen & 
Myrhaug 1978). While the mechanisms for plunging and spilling breaking waves are 
often thought to be quite different, we will show that their formation is similar with 
their qualitative features depending mainly on the energy input rate. 

t Present address: Korea Atomic Energy Institute, Taejon, Korea 
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The fundamental experiments for determining two-dimensional wave-breaking cri- 
teria (apart from that induced by wind-wave interaction) fall into three main cate- 
gories: (i) the focusing of essentially two-dimensional waves in the lateral direction 
(Ramberg & Griffin 1987; Van Dorn & Pazan 1975); (ii) the towing of a submerged 
object such as a hydrofoil to produce steady breakers (Duncan 1981, 1983); and (iii) 
the focusing of variable-length waves from a modulated wavemaker or wave source 
to produce unsteady breakers (Dommermuth et al. 1988; Duncan, Wallendorf & 
Johnson 1987; Rapp & Melville 1990) or the overturning of an irregular wave train 
(Ochi & Tsai 1983) to produce unsteady breakers. 

The most comprehensive laboratory study of unsteady deep-water breaking is that 
of Rapp & Melville (1990). The dispersive character of deep-water waves was used 
to focus a wave packet to generate a single unsteady breaking event at a controlled 
location in the wave channel. Rapp & Melville found that the growth rate of the 
waves prior to breaking was an important factor in predicting breaking. This had been 
found previously by Van Dorn & Pazan (1975) and to a lesser extent by Ramberg, 
Barber & Griffin (1985) in their convergent channel experiments. A recent review 
by Banner & Peregrine (1993) is more descriptive in nature and does not attempt to 
develop a wave-breaking criterion. 

Several of these experimental studies propose a wave-breaking criterion based on 
peak-to-peak (crest-to-trough) wave height. However, the validity of a standard 
criterion has been questioned (Melville & Rapp 1988), in part because peak-to- 
peak wave heights vary significantly during breaking and often decrease just before 
breaking. Clearly, no breaking criteria can be simple and precise. We have opted 
for a simple one in hopes that it can be more universally applied, although ex- 
perimentally or computationally determined criteria will be a function of many 
parameters. Extensive discussions of breaking criteria based on wave height are 
given in Ochi & Tsai (1983), Huang et al. (1986), and Bonmarin (1989). Breaking 
criteria based on crest acceleration are discussed by Srokosz (1986) and Longuet- 
Higgins (1985). Experimental determination of the onset of breaking is also dif- 
ficult without detailed velocity measurements at the crest (Melville & Rapp 1988; 
Van Dorn & Pazan 1975), which are usually not available and are difficult to 
obtain. 

Computational studies of breaking waves usually form waves by applying a point 
pressure disturbance (Longuet-Higgins & Cokelet 1976) or obtain breaking condi- 
tions simply from having sufficiently energetic initial conditions (Vinje & Brevig 
198 1). While many algorithms have been developed that simulate breaking waves, 
no study has systematically examined the parameters to determine breaking criteria. 
For example, wave breaking caused by a modulated wavemaker has been verified 
computationally by Dommermuth et al. (1988), but these computations were so 
expensive that only one experimental event was verified. In addition, previous com- 
putations tend to show plunging waves instead of the more commonly observed 
spilling breakers. 

In this study, we computationally examine the steepening and breaking of deep 
water waves generated by the experimental methods cited above. We consider only 
spatially periodic computations, so an ad hoc energy input term is deduced for 
the convergent wave channel. Although the periodic boundary conditions preclude 
studying the wavemaker problem, we briefly examine the effect of wave modulation 
using a larger computational region (more than one primary wavelength) as in Dold 
& Peregrine (1986). The effect of beach reflections can be modelled by putting a small 
standing wave component in the initial conditions. Finally, to crudely model waves 
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produced by submerged hydrofoils we use an array of simple submerged dipoles. The 
array is used to preserve spatial periodicity. 

There are difficulties in interpreting the differences caused by the computational 
spatial periodicity as compared to temporal periodicity in most experiments. These 
differences also affect comparisons of temporal us. spatial growth when we model 
a convergent channel. Also, experiments continue after breaking occurs, while the 
time-marching computations must stop at the first occurrence of breaking unless an 
ad hoc condition models the turbulence and air entrainment. We will show that 
accurate spectral computations break down sooner, indicating the possible formation 
of a singularity and evidence of the failure of potential theory before the wave crest 
approaches the forward face. 

Only wave height experimental data are analysed here since these traditional 
measurements are easily obtained compared to velocity measurements. These data 
are used to show that potential energy reduces the experimental scatter in breaking 
criteria and to show that it acts as a better predictor (rather than just indicator) of 
breaking. 

In $2, we pose the problem for periodic waves, including the modelling of the 
growth in energy and the effect of submerged disturbances. Section 3 contains a 
summary of earlier computational progress followed by a formulation of the two 
computational techniques used in this study. Section 4 presents numerical results, 
including comparisons to related computational schemes and the development of 
breaking criteria as a function of the energy input rate. The computations are 
compared to some previous experiments in $ 5, and $6 summarizes the findings. 

2. Problem formulation 
The problem domain is shown in figure l(a). The scales are chosen to make gravity, 

density, and the primary wavenumber unity. The phase speed and angular velocity of 
a linear wave will then be unity as well. The initial boundary value problem solution 
is described by a complex potential w(5) = 4 + ily, where 4 is the velocity potential, 
y is the stream function and 4: = x + iy represents the two spatial coordinates. At 
every time step, the unknown boundary values of the velocity potential (half of the 
values are known from the boundary conditions) are solved using the Cauchy integral 
theorem : 

where a is 0 or 27t if the location of the kernel singularity, c k ,  is outside or inside the 
boundary, respectively. If the kernel singularity is on the boundary ( c k  E as), a is 
equal to the included angle, and the integral is treated as principal-valued. 

The kinematic and dynamic boundary conditions of a free surface for inviscid flow 
are given as 

DC dw' 
-= -  
Dt d r  

and 

Here, p is a prescribed pressure (normally 0, as in this study, unless surface tension or 
wind effects are included), D/Dt is a material derivative, and denotes the complex 
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FIGURE 1. Problem domain: (a) physical space, ( b )  mapped space. 

conjugate. The kinematic condition requires that material particles on the free surface 
stay on the free surface, and the dynamic boundary condition requires that the 
pressure remains constant at the free surface in the absence of surface tension. 

We complete the problem formulation by applying a periodic boundary condition 
in the horizontal direction such that w ( r )  = w(5 + 2n), the deep-water condition 
requiring w -, 0 as y + -00, and initial conditions. These initial conditions on the 
free surface can be homogeneous if the waves are forced by submerged dipoles. For 
purposes of illustration and comparison, we generally use the same free-surface initial 
conditions as McIver & Peregrine (1981): 

y = asinx and 4 = acosx. (2.4) 

These initial conditions satisfy linear theory as the wave amplitude a becomes small. 
We apply increasing values of a until the wave breaks. We also apply more com- 
plicated initial conditions to examine wave modulation and the effect of applying 
initial conditions computed from steadily progressing waveforms using the method 
of Schwartz & Vanden-Broeck (1979). 

Finally, we note that the above formulation is ill-posed in the sense that the solution 
to the complex potential w is non-unique. A constant imaginary number can be added 
to the solution. An extra constraint must be added if a standard direct solver is used. 

2.1. Modelling the convergent wave channel 
The comergent channel is inherently a three-dimensional problem. If the convergence 
is small in z (the spanwise direction out of the plane of figure la), a multiple-scales 
approach will lead to the three-dimensional effect being delayed to a Poisson equation 
at higher order, with the lowest-order solution being that of a non-convergent wave 
channel. The sidewall boundary condition simply becomes 4z = q h ,  where q 
is the slope of the converging walls and the subscripts x and z represent partial 
differentiation. This method of analysis precludes the possibility of modelling the 
flow as spatially periodic and hence makes the problem intractable using periodic 
algorithms. 

All these modifications would add considerable computational complexities. Instead 
we simply add a term in the Bernoulli equation that causes the energy to increase 
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exponentially in time so that (2.3) becomes 

w -- 
Dt 

This ad hoc term is similar (but with the opposite sign) to the dissipative term used 
to develop radiation conditions. Starting with a wave of small amplitude, this term 
eventually causes the wave to break, much like the convergent channel. While this 
causes exponential temporal growth in the computations, the experimental energy per 
unit width, E, grows in space. The corresponding temporal growth parameter can be 
approximately related through the group velocity and conservation of energy by 

(2.6) 

The dimensionless values for the experiments considered here ( q  = 1/16) correspond 
to 

y = - - = - - - = - - -  1 dE 1 dz, 1 dz, ?Cg 

E dt z, dt zw dx cg = -* ZW 

T 2  
W 

=K-, 

where the dimensional constant K is 0.008 m s - ~ ,  and W and T are the dimensional 
values of the local channel width and wavemaker period, respectively. The small 
value of K keeps the growth parameter below 0.05 in the region of breaking. 

2.2. Modelling periodic submerged disturbances 
We also wish to show how submerged disturbances can force wave breaking. Retaining 
the periodic boundary condition requires that the disturbances be periodic. Rather 
than model a complex two-dimensional shape such as a hydrofoil, we use a periodic 
array of moving dipoles: 

(2.8) 

where adp and {dp are the strength and location of the dipole, respectively. The dipole 
depth, ddp, and velocity, vdp, are prescribed such that ( d p  = (2x + Vdpt, + p ) .  As long 
as the strength of the dipole is not too large and the depth is not too small, the 
dipole can closely represent a cylinder of radius rdp if adp = vdprip/2. Previous wave 
computations in three dimensions have shown good agreement between dipoles and 
complex bodies (which are more difficult to compute) if the disturbance is sufficiently 
deep (Cao, Schultz & Beck 1990). 

Since the dipole is a simple pole in the complex potential plane, the only alteration 
required is to subtract the singular part of the solution and solve only for the remain- 
ing regular term from the integral equation (2.1). 

wdp = adp cot [ (< - < d p ) ]  3 

3. Computations of steep and breaking waves 
3.1. Recent computational advances 

Although formal analytical techniques have been developed for small-amplitude 
gravity waves, unsteady and steep waves must be solved numerically. The most 
efficient of these algorithms are based on boundary integral techniques. Even then, 
the algorithms can be time consuming. Hence, no thorough and complete parametric 
study has been performed on gravity waves. Usually, to reduce the computational 
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effort, the problem domain is kept as small as possible by applying periodic boundary 
conditions. We have adopted this restriction here. Recently, computations with many 
fundamental wavelengths inside the periodic domain have been applied by Dold & 
Peregrine (1986), and the non-periodic fully nonlinear wavemaker problem has been 
computed by Dommermuth et al. (1988). Casual observations of breaking waves show 
that they are not spatially periodic. Here we only present results for the periodic 
problem, although by using a large spatial period, the model can approximate results 
on an infinite domain. 

The boundary integral numerical schemes for irrotational flow problems can be 
divided into three general approaches based on Green’s functions (Longuet-Higgins 
& Cokelet 1976; Vanden-Broeck 1980), vortex dynamics (Baker, Meiron & Orszag 
1982), or the Cauchy integral theorem for complex potentials (Vinje & Brevig 1981). 
To some extent, the three techniques give equivalent results (McIver & Peregrine 
1981). Work by Dold & Peregrine (1984) has shown that algorithms based on the 
Cauchy integral theorem can be up to 50 times faster than Green’s function algorithms 
and 10 times faster than those using vortex methods. Lin, Newman & Yue (1985) use 
the Cauchy formulation when solving two-dimensional problems and revert to the 
Green’s function algorithm for axisymmetric problems. The efficiency of the complex 
algebra is significant. 

Here we report on two algorithms based on the Cauchy integral theorem. The 
first is an improvement of a piecewise-linear algorithm of Vinje & Brevig (1981) as 
described in Schultz & Hong (1989). The second is a spectral technique similar to 
that proposed by Roberts (1983) and described in Huh (1991). We describe both 
methods because the first method, although less accurate and more computationally 
intensive, is also more robust. Comparisons will be presented. 

In both methods, the physical domain is mapped to an approximate unit circle 
using the conformal transformation : 

[ = eiz (3.1) 

(see figure lb). This eliminates the periodic boundary conditions and sharp com- 
putational corners used by Vinje & Brevig (1981). All derivatives are taken in the 
conformed space - the piecewise-linear method uses three-point central differences 
while the spectral method takes derivatives in the spectral space of the conformed 
representation. An alternative method (not used here) does not use conformal map- 
ping but replaces the infinite periodic integrand with summation over a finite domain 
to form a cotangent kernel (Baker et al. 1982). 

The algebraic system that results from discretizing the integral equation is iteratively 
solved for both methods using a generalized minimum residual method (GMRES) 
based on Saad & Schultz (1986). This variation of the conjugate gradient method for 
nonsymmetric matrices works well on the diagonally - dominant matrices of either 
method-especially matrices from the spectral algorithm. 

Time marching is also similar in both algorithms. Fourth-order Runge-Kutta-Gill 
and predictor-corrector methods with an automatic adjustment of step size were both 
used, with the predictor-corrector method showing better computational efficiency, 
especially for the higher-accuracy computations. Ultimately, we decided on the use 
of the LSODA package from Lawrence Livermore to march in time. 

3.2. Piecewise-linear computational technique 
We take c k  in (2.1) to approach the boundary from the outside of the domain so 
that a is zero, although there are computational reasons for placing & slightly away 
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from the contour for some cases (Schultz & Hong 1989). The algebraic system is 
formed by discretization of (2.1), as explained in Vinje & Brevig (1981), and by letting 
the kernel singularity approach each of the N nodal points, i.e. ( k  + &. A special 
limiting process is needed to evaluate the integration near ( k .  The system of linear 
algebraic equations when w is discretized as a piecewise-linear function between the 
N boundary nodes is 

N 

c w j r j k  = 0, k = 1, ..., N ,  (3.2) 
j=l 

where 

(3.3b) 

Equation (3.3) is evaluated using l'Hopital's rule when j = k + 1 or j = k - 1. Moving 
the known boundary conditions to the right-hand side gives a complex algebraic 
system for unknown y j  on the free surface. 

When the complex potential is known along the domain boundary, the solution can 
be stepped forward in time using the Bernoulli equation and the kinematic boundary 
conditions. We solve this problem in a way similar to Vinje & Brevig (1981) but with 
the following changes: 

(i) Rather than using the real or imaginary parts of the discretized Cauchy integral 
theorem (depending on whether the real or imaginary part of w is known), we use 
both to give 2N real equations and N real unknowns. Numerical experiments for 
known test cases (Schultz & Hong 1989) show that the least-squares solution is 
better for nearly circular contours, especially when the node placement is irregular 
(as will be the case after nodes are convected on the free surface). However, both 
results are second-order convergent. The solution time for a direct method of 
inverting the overdetermined system would be twice that of the determined system, 
but our experience with iterative conjugate gradient solvers indicates an increase in 
computational costs of only 10 YO. 

(ii) We use a conformal map to eliminate the bottom and periodic boundary 
conditions. 

(iii) We use a central difference form for dw/dr (or dw/d(), while Vinje & Brevig 
(1981) use a truncated analytic form. Since the solution is piecewise-linear rather 
than analytic, we have found that some numerical instabilities can develop using 
the truncated analytic form. One can easily find examples where the derivative 
dw/d< at a corner of the contour computed using the analytic form lies outside the 
range computed by the forward and backward derivatives. This violates the spirit of 
using piecewise-linear functions and can lead to numerical instabilities, although the 
truncated analytic form works better when the contour is smooth. 

3.3. Spectral computational technique 
Roberts (1983) used a desingularized kernel in his vortex formulation. Generally, it 
is difficult to find a suitable desingularized form of a kernel in an integral equation, 
but in the complex formulation it is relatively simple. The Cauchy integral equation 



208 

(2.1) can easily be rewritten as 
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(3.4) 

where the principal value integral can be replaced by the closed contour integral 
since the integrand is no longer singular. When < approaches ck,  the integrand 
approaches dw/ds at the kth node point. Therefore, this kernel does not show the 
singular behaviour as 5 approaches c k .  The integral equation (2.1) is converted to the 
following sets of equations for k = 1 . . . N :  

N 

XIjk = 0 fork = l , . . . , N  , (3-5) 
j=l 

where N is the number of nodes, and I j k  is represented by 

The algebraic system (3.5) effectively becomes a differential system because l j k  includes 
the derivative of w. To evaluate these derivatives spectrally, we use a cardinal function 
representation of w (Boyd 1989): 

N 

where 
1 7c 

N Cj = sin n ( ~  - ~ j )  cot -(s - sj), 

and the derivative of Cj is 

Then, ( 1  5 )  becomes 
N 

j=  1 

where the influence coefficients r j k  are now 

fork = l , . . . , N  , 

I -  \-  c j = k *  
i=l,i#k 

(3.7) 

(3.10) 

Unlike the method of Baker et al. (1982), which evaluates the integrand at every other 
point, the desingularized kernel is evaluated at every nodal point; hence, the matrix 
is full. 
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Filtering in the spectral algorithm is sometimes necessary to allow the wave com- 
putation to proceed longer in time when breaking occurs. The following filter is 
used : 

(3.12) 

where fi multiplies both Fourier coefficients with wavenumber i for all x, y, C#J and 
w. When a filter is applied, we typically use q=l and nf=28 for N=64. This is a 
smooth low-pass filter that affects only a few high-frequency coefficients. 

4. Typical computational results 
4.1. Convergence and stability 

The convergence of the spectral method is compared to the piecewise-linear method 
in Huh (1991) for steady test problems. Here, we briefly extend this comparison 
to time-marching by examining a gravity-wave problem with an initial amplitude 
of a = 0.2 in (2.4) for time 0 < t 4 10. Table 1 compares maximum errors (over 
0 < t < 10) in conservation of energy for varying N. The conservation of mass results 
are very similar. The conservation of energy is determined by E, = [E(t)- E(O)] /E(O) ,  
where E is given in the usual way by 

The first and second terms represent potential and kinetic energy per unit surface 
area (V and T), respectively, and the integrals are along the free surface for one 
wavelength. The spectral computations results are not only much more accurate 
than the piecewise-linear technique (Huh 1991), but they are less computationally 
intensive. CPU times are listed for an Apollo DN-10000 RISC workstation for the 
strong algebraic system and varying error criteria (e, = e,) for the time-marching and 
iterative algebraic solver-LSODA and GMRES, respectively. All these computations 
for a = 0.2 can be computed indefinitely without further loss in accuracy (as tested 
to t = 200). The computations can fail if too high precision is required for low 
spatial resolution (N = 16) or if the required precision is close to machine precision 
(N = 32). Generally, much more accurate time marching is required to obtain the 
benefit of larger-N computations. For this initial condition, the spectral computations 
can give essentially double-precision (16 digit) machine accuracy when N = 32 and 
€, = €, = 10-13. 

4.2. Steadily progressing waves 
We first show that under special circumstances waves of large amplitude do not 
necessarily break. Specifically, we examine gravity waves of permanent form, and 
suppress the Benjamin-Feir instability by applying periodic boundary conditions that 
do not allow subharmonic disturbances (Longuet-Higgins 1978). The initial conditions 
for a steadily progressing wave can be computed from a series expansion as performed 
by Stokes (1880) and extended using computer algebra by Schwartz (1974). Rather 
than use series acceleration techniques, we compute the initial conditions for our 
time-marching code from the iterative method of Schwartz & Vanden-Broeck (1979). 
We set their surface tension parameter to zero and modify their mapping slightly 
to desingularize the mapping at high amplitudes. Because obtaining accurate initial 
conditions is the 'weak link' in these computations, we compute twice as many points 
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N et = E, max. E,  CPU (s) 

16 10-4 
16 

16 10-lo 
32 lo-* 
32 
32 
32 10-13 

32 10-14 

64 1043 

16 lo-' 

64 

2.6 x 10-3 
5.2 x 10-5 
3.4 x 10-7 

1.0 x 10-7 
1.5 x 10-9 

8.1 x 10-13 

1.6 x 10-13 

failed 

1.3 x 

failed 
1.8 x lo-'' 

0.64 
0.92 
1.41 

3.94 
5.95 
8.82 
10.26 

32.9 
60.0 

- 

TABLE 1. Spectral computational comparison 

0 2 4 6 
-0.3l I ' I I ' I 

-2 
X X 

FIGURE 2. Steadily progressing wave profiles: (a) (ywx - ymi,)/2n = 0.1 (spectral), 
(b) (y -  - y,,,in)/2n = 0.1 15 (piecewise-linear). 

as we use in the time-marching algorithm and discard every other value. To obtain 
an accurate Jacobian matrix for proper convergence, these computations must be 
performed in double precision (16 digits). Surprisingly, unless the amplitude is near 
the limiting Stokes wave height that forms the 120" crest, single precision is sufficient 
for the time-marching algorithm. 

Figure 2(a, b) shows eight wave height profiles spaced At = 0.5 apart for the ampli- 
tude parameter (ywx - ymi,,)/2n: = 0.1 and 0.115, respectively. Note that the vertical 
scale is greatly exaggerated in this figure and in all wave profiles to follow. The 
time-marching computations were performed using N = 64. The spectral algorithm 
was used in figure 2(a) while the more robust piecewise-linear algorithm was required 
for the computations of figure 2(b) since the amplitude is near the Stokes limit of 
(ymx - ymin)/2n: = 0.14. In any case, the conservation of energy criteria cannot be 
satisfied better than E ,  = for long times using N = 64. The phase velocities 
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(as determined by marching for long time) are approximately 5.2 and 6.7 % higher 
than linear waves for the cases in figures 2(a) and 2(b), respectively and have con- 
verged to an accuracy of 0.005%. The RMS variation in the peak-to-peak wave 
height is 8 x for figure 2(b). The overdetermined 
system in this case is twice as accurate as the strong system and only requires 20% 
more CPU time. The spectral computation was again the most accurate, conserving 
energy and mass to within one part in lo9 (compared to one part in lo4 for the 
equivalent piecewise-linear computations and one part in lo3 for the higher wave 
of figure 2b). The potential energy V and kinetic energy T were constant to seven 
significant digits (V = 0.02292022, T = 0.02412471) for the computations shown in 
figure 2(a) and four signscant digits for figure 2(b) ( V  = 0.02903, T = 0.03110). 
These waves are not found experimentally because they are subject to a Benjamin- 
Feir instability (that is suppressed here by the imposed periodic boundary conditions). 

for figure 2(a) and 2 x 

4.3. Simple harmonic linear wave initial conditions 
Figure 3(a,b) shows typical computations of free surface profiles spaced At = 0.2 
apart for two different initial amplitudes. The first family of curves for initial 
amplitude a = 0.3 results in a spilling breaker as shown in figure 3(a). When more 
energetic initial conditions are used, as in figure 3(b) (a = 0.544), the wave becomes 
a plunging breaker. The computation in figure 3(a) is within graphical accuracy to 
the piecewise-linear Cauchy integral and Green’s function algorithm in McIver & 
Peregrine (1981). The spectral algorithm starts to break down as the algebraic system 
becomes ill-conditioned in the sense that the iterative solver can no longer drive the 
residual below the prescribed criterion E ~ .  The wave profiles change from solid to 
dashed lines at this time. Until this time, the spectral (solid line) and piecewise-linear 
(dashed line) computations are nearly identical although the spectral result is far 
more accurate. The source of the breakdown is very steep gradients of dfl/dz near 
the nodes marked by circles in the last accurate wave profiles in figures 3(a,b). The 
computations can be made to proceed further in time by using an iterative procedure 
that simply minimizes the residual, but at the expense of being as inaccurate as 
the piecewise-linear computations. We are continuing to study this in an attempt 
to see if singularities develop in the inviscid model before ‘breaking’ occurs, as in 
the study of singularity formation in vortex sheets (Krasny 1986). Our experiences 
with filtering, changing the precision, adding extra constraints to make the algebraic 
system nonsingular, and using an overdetermined algebraic system show that the 
computations are affected only near breaking (Huh 1991). None of these techniques 
appear to allow accurate computations near breaking. This is consistent with the 
formation of a singularity. It would seem that surface tension, or regularization by 
adding dissipation is necessary to continue fully converged solutions further in time 
in a breaking simulation. 

We have run numerical simulations for many values of a to determine the initial 
conditions (2.4) that cause breaking or spilling. We find that waves will spill for 
a slightly larger than 0.27 but will progress indefinitely for a < 0.26. Typical 
computations use N = 60 or 80 and At = 0.1 or 0.05. These results are somewhat 
sensitive to the initial conditions in that using a three-term Stokes wave height initial 
condition, 

does not apply as large a perturbation to the steady form, and, hence, the breaking 

y = a sin x + $a2 sin 2x + fa3 sin 3x, (4-2) 
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FIGURE 3. Free surface profiles (At = 0.2, N = 64): (a) spilling breaker (a = 0.3), (b)  plunging 
breaker (a = 0.544), (c) breaking parameters (redrawn from Bonmarin 1989). 

A= F,IF, 

is suppressed to slightly higher amplitudes. This can be seen by examining the 
limiting case of an 'exact' steady waveform in figure 2(b), where ymx - ymin = 0.722 
is maintained without breaking. However, a small subharmonic disturbance would 
cause these high waves to break. 

The geometric properties are compared to Bonmarin's ( 1989) experiment for spilling 
breakers. The degree of asymmetry of the crest is expressed by horizontal and vertical 
asymmetry factors (p and A), and the steepness is expressed at the front and rear 
(c and 6 as defined in figure 3c). Our spilling results starting with simple harmonic 
waves agree with Bonmarin's experiment, as shown in table 2. The plunging wave 
comparisons are not as close, since the profiles (a=0.544) are close to vertical and 
give large values of 2 and e. 

Since the total energy is constant throughout an entire numerical simulation as 
well as a (presumably inviscid) experiment, it would appear to be an ideal criterion to 
determine breaking. Unfortunately, without a carefully calibrated and instrumented 
wavemaker or the ability to measure the velocity everywhere in the flow field, the 
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P L c 6 
Bonmarin (1989) Range 0.59-0.91 0.78-2.37 0.24-0.68 0.19-0.42 

Mean Value 0.15 1.38 0.41 0.31 
Present results a=0.3 0.72 1.93 0.62 0.32 

a=0.28 0.70 1.12 0.40 0.36 

TABLE 2. Geometric properties of spilling breakers 

total energy cannot be measured. Instead, a measured steepness criterion (ymX - 
y,i,)/wavelength is usually used. We see from figure 4(a) that this criterion varies 
widely in time for the two cases with initial conditions (2.4) of a = 0.27 and 0.28. The 
non-breaking wave peak-to-peak height becomes higher than the value at a previous 
time for a wave that breaks. Hence, the height for a non-breaking wave could exceed 
that of a wave that is breaking. The computations show that the wave breaks at less 
than the niaxirnum peak-to-peak height. There is experimental evidence for this as 
well (Melville & Rapp 1988). 

However, the potential energy, although not constant in time, is roughly half of the 
conserved total energy. Hence, it is much less variable than the peak-to-peak values 
and still can easily be determined from wave probe data. Figure 4(b) demonstrates 
that the computed RMS wave heights (or potential energies) for these same two initial 
conditions are more distinct. That is, the RMS height of the breaking wave with 
initial condition a = 0.28 does not fall below the peaks of the non-breaking wave 
with initial condition a = 0.27, in contrast to the ymX - ymin data. This indicates that 
potential energy may be a better criterion to determine whether a travelling wave will 
break. These computations also show that breaking does not occur at the peak of 
the potential energy. This can be anticipated since the increased fluid velocities near 
the crest would increase the kinetic energy at the expense of the potential energy. 
The potential energy at breaking is about 52 to 54% of the potential energy of 
the highest Stokes wave computed by Cokelet (1977). (These percentages would be 
approximately one percent higher when compared to the limiting Stokes wave, which 
has the 120" crest but is less energetic.) The total energy is 49 to 52% of that for 
the limiting Stokes wave, even though the kinetic energy is slightly more than the 
potential energy at the time of breaking. This energy is considerably lower than the 
computed wave with 2/3 the limiting wave energy predicted to break by Cokelet 
(1979). 

It should be noted that the computational wave data are determined at the same 
instant of time for the results of figure 4(a),  while experimental measurements using 
one wave probe are measured at one location for a temporal period. 

The 
piecewise-linear computations proceed further before breaking down, but as these 
computations are refined, they approach the spectral computations and do not fail 
earlier when more stringent error requirements are applied. Figure 4(c) shows the 
error in conservation of energy for several computations of the spilling breaker with 
initial amplitude a = 0.30 as shown in figure 3(a). All computations degrade with time 
such that an energy error of less than is not possible at T = 5.5. For the cases 
that show a continual degradation of error, the time marching and residual error 
criteria (ct and c,) were made sufficiently strict such that the only error is that due 
to spatial discretization. The N = 64 and one of the N = 32 calculations showing a 

Figure 4( a, b) also compares spectral and piecewise-linear computations. 
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FIGURE 4. (a)  Peak-to-peak wave heights for a =0.27 and 0.28: spectral N = 32, -; 
piecewise-linear N = 32, - - -; piecewise-linear n = 64, . . . . . . .. ( b )  RMS wave heights for the 
same two initial conditions. (c) Energy conservation errors us. time for spectral computations of a 
spilling wave (a = 0.30). ( d )  The formation of a possible singularity for a spilling wave (a = 0.30, 
t = 5.0, N = 32): , Real part d/3/dz; - . - . -, Imaginary part dp/dz; - . - . -, 
vertical acceleration Du/Dt ; . . . . . . . . . , horizontal acceleration Du/Dt. 

relatively constant error of 3 x for t < 3 were limited by the above precisions. All 
the N 2 32 spectral calculations are also limited by the double-precision arithmetic. 

The solution appears to break down considerably before the Taylor instability 
mechanism (when the normal acceleration of the free surface exceeds the normal 
component of gravity) mentioned by Xu & Yue (1992) and others. This is shown 
in the potential derivatives and accelerations of figure 4(d) for the a = 0.30, N = 32 
spectral computation. The figure shows very large changes near x = 2, in the location 
shown by the dots of figure 3(a). This indicates that it may be impossible to obtain 
solutions to a prescribed accuracy all the way until breaking. As an example, adding 
filtering and using an overdetermined system cannot yield a solution accurate to 
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RGURE 5. Wave profiles with exponential growth with increment between plotted profiles of 
At = 0.2: (a) rapid growth y = 0.5, (b)  slow growth y = 0.02. 

an energy error of less than for this initial wave amplitude at a time t = 5. 
Again, this is consistent with the formation of a singularity in finite time. The 
spectral solutions using N = 32 and N = 64 are identical to graphical accuracy in 
figure 4(d) until t = 5.0. At that time, owing to the singularity, the high-frequency 
coefficients differ significantly depending on truncation. Plunging breaker simulations 
(not shown) show similar trends in computational accuracy. Filtering or use of a 
direct algebraic solver does not help the simulation progress further in time when 
simulating a breaking wave. 

4.4. Convergent wave channel 
The growth rate, y ,  of equation (2.5) will cause any wave of any non-zero initial 
amplitude to break eventually. When the growth rate is large, the wave quickly 
plunges (figure 5a); when it is smaller, after a longer time the wave spills like those 
seen experimentally (figure 56). The time required for the wave to break, of course, 
also depends on the energy and the details of the initial wave. 

Figure 6 shows the temporal development of y- - ymin, the potential energy, and 
the total energy for a growth parameter y = 0.2 and two different initial conditions, 
a = 0.1 and a = 0.2. The average growth in the total energy for all cases is 
exponential at the rate expected, but with small oscillations. These oscillations are 
not computational errors, but artifacts of the growth model. The potential energy and 
the kinetic energy also grow exponentially but with larger oscillations. The lines of 
figure 6 cease at the time when the computation fails, which for these cases result in 
wave profiles that appear to be spilling breakers. All computations are spectral except 
for the dotted line, which shows small deviations of the peak-to-peak measurement 
near breaking for a = 0.2 when the piecewise-linear algorithm is used. In contrast 
to the no-growth breaking (figure 4u, b), these numerical simulations show breaking 
at or very near the maximum peak-to-peak wave height or potential energy. The 
wave grows to a higher value (by either measure) before breaking when the initial 
amplitude is smaller. This appears to be caused by the ability of the smaller wave to 
evolve in time more similarly to a nonlinear steadily progressive wave. 



216 PK H! Schultz, J. Huh and 0. M .  Gr@n 

1 

0.1 

I I I 

5 10 15 20 
0.01 ' ! 

0 
t 

FIGURE 6. Evolution of wave diagnostics for spectral computations with growth parameter y = 0.2 
for two initial wave heights, a = 0.1 and 0.2: , ymX - yMn; - - -, V (potential energy); 
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FIGURE 7. Breaking criteria for exponential growth conditions: 0, a = 0.1; A, a = 0.2; 

3 Y m x - Y m i n ; - - -  , V, potential energy. 

Breaking wave criteria for waves with varying growth rates can be obtained from 
figure 7. This shows that the breaking criteria (by either peak-to-peak or potential 
energy measures) increase with the energy input rate, except for a 'resonance' phe- 
nomenon around y = 0.1, which appears to be an artifact of the periodic constraints. 
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The dependence of the breaking height has been correlated with growth rate by 
Van Dorn & Pazan (1975), who have also conducted experiments in a convergent 
channel. They obtain somewhat higher values of breaking wave height than those of 
Ramberg & Griffin (1987), which is consistent with the higher convergence rate of 
their channel ( q  = 1/10) compared to that for Ramberg & Griffin ( q  = 1/16). 

4.5. Modelling periodic submerged disturbances 
We examine the effect of underwater disturbances on the free surface, especially 
as it leads to wave breaking. For computational simplicity our two-dimensional 
potential flow algorithm uses a periodic dipole array to allow periodic boundary 
conditions. Duncan (1981, 1983) towed hydrofoils to create breaking waves while 
avoiding separation (which cannot be modelled in our potential flow model) and to 
create lift (which we prefer not to model since vortices are more difficult to model than 
dipoles). We ‘tow’ the dipole array at different speeds, depths, and dipole strengths 
(the radius of the approximate cylinder). 

We tow the dipole at constant speed starting from rest with homogeneous initial 
conditions. From steady linear theory, the number of waves that should appear in a 
computational (or dipole array) period is equal to l/v2p (for our scaling). Here we 
have chosen vdp values of -1 and -0.5 to represent 1- and 4-wave computations. 

Figure 8(a, b) shows typical computations for a dipole starting at (2x, -ddp) with 
unit depth, when Tdp = 0.2 and udp = -1. Figure 8(a) shows the initial development of 
the free surface (t=O, 1, 2, 3, 4) and figure 8(b) shows the last six profiles (t=28, 29, 
30, 31, 32, 32.28) before the iterative procedure breaks down and a plunging breaker 
is formed. The free surface development is predicted with the same conditions except 
vdp=-0.5 in figure 8(c) (t=O, 1, 2, 3, 4), and figure 8(d) (t=33, 34, 35). Initially, for 
both dipole speeds, a single peak occurs slightly ahead of the dipole, and a single 
trough occurs behind the dipole, as shown in figure 8(a,c). When vdp is not -1, other 
peaks are observed as shown in figure 8(d), eventually forming the four local maxima 
when vdp=-0.5, as predicted by steady linear theory. The conditions in figure 8(d) 
are close to those for a non-breaking wave, and hence, a small curling or ‘spilling’ 
breaker is formed rather than the plunging breaker of the previous case. 

The peak-to-peak wave height (ymx - ymin) and RMS wave height are shown 
in figure 9(a,b) for various dipole strengths with ddp = 1 and udp = -1, and in 
figure 9(c,d) for various dipole depths with rdp = 0.2 and vdp = -1. These numerical 
simulations show a temporal beating with breaking at or near the maximum values 
of the peak-to-peak wave height or potential energy. A nearly flat free surface can 
recur. The values of y,,, - ymin are more noisy than that for V - at least in part 
due to the sudden start of the disturbances. The waves begin to break close to the 
Stokes limit of y,, - ymin = 0.88. Similar behaviours are obtained when Vdp = -0.5, 
except under this condition the Stokes limit of wave height is approximately 0.22 
(since four waves are generated in the 2x computational wavelength). The breaking 
occurs at the peak of the first beat period for rdp = 0.14 (t=60), at the second for 
r d ~ ~ 0 . 1 2  (t=241.5) and at the third for r d p = o . l l  (t=420.6) as shown in figure 9(a,b). 
When r d p  is fixed and the depth is varied, waves break at the first peak for ddp = 1.8 
(t=65.2), at the second for ddp=1.9 (t=213) and at the third for ddp=2.0 (t=386) as 
shown in figure 9(c,d). For smaller radii and deeper depths, the breaking is not 
observed. Table 3 shows the minimum values of rdp that cause breaking, y,, - ymin, 

RMS wave height, and beat period before breaking occurs for three combinations 
of dipole depth (0.5, 1, 2) and two speeds (-1, -0.5). The peak-to-peak and RMS 
wave heights at breaking when udp = -0.5 are similar to the previous cases such as 
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FIGURE 8. Wave profiles caused by a moving dipole: (a)  initial development v d p  = -1, 

(c )  initial development u p  = -0.5, r d p  = 0.2, d d p  = 1, 0 < t < 4; (d )  final development 

in figure 4(a, b), especially for deeper dipoles. The y,, - ymi, values for udp = -0.5 
are similar when multiplied by four, the number of wavelengths in the computational 
domain. However, the RMS heights for Udp = -0.5 are underestimated since they 
are measured over the entire computational domain and are strongly affected by the 
non-breaking waves in multiple peak simulations. 

While the potential energy representation is the same for the dipole-forced waves 
(except for the possible complication of multiple waves), the kinetic energy should ex- 
clude the kinetic energy inside the 'cylinder' formed by the dipole. Then, conservation 
of energy can be obtained by knowing the work done by the dipole using Lagally's 
theorem. We no longer check conservation of energy, but mass is still conserved to a 
high degree (the mean height error is typically of the RMS wave height). 
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d d p  0.5 1 .o 2.0 

- 1.0 - 0.5 - 1.0 - 0.5 - 1.0 - 0.5 % 
Min r d p  0.06 0.04 0.11 0.07 0.2 0.37 
Ymax - Ymin 0.51 0.16 0.62 0.14 0.70 0.17 
RMS 0.13 0.021 0.14 0.015 0.16 0.021 
Beat period 290 250 180 410 150 280 

TABLE 3. Wave breaking caused by a periodic dipole array 
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FIGURE 10. Wave computations for various dimensional dipole depths comparable to Duncan (1983) 
experiments: , depth = 21 cm; ........., depth = 19.3 cm; - - - -, depth = 18.5 an: (a) 
y,, - ymin, ( b )  RMS wave height. 

behaviours as Duncan in that no breaking is observed when the dipole depth is 
21 cm, the breaking occurs at the first peak (t=73.7) when depth is 18.5 cm, and at 
the second peak (t=167.9) when depth is 19.3 cm. However, the wave profiles are 
different since the angle of attack and bottom are missing from the model and the 
periodic dipoles affect the wave profiles. The large variances in wave behaviour for 
small variations in disturbance depth is, none the less, very striking. 

4.6. Wave modulation and reflection 
Experimental waves break at significantly less than the predicted Stokes limiting 
slope value, and even less than that predicted in the previous sections. For example 
in the convergent-channel data of Q 4.4, waves break at lesser heights presumably 
because of three-dimensional effects, viscous effects, wave reflections from beaches, 
and the Benjamin-Feir instability. We can easily test the last two effects on our two- 
dimensional algorithm. The modulational instability is modelled by taking a larger 
periodic domain and applying a subharmonic disturbance to the initial condition. 
Dold & Peregrine (1986) computed recurrence caused by modulation, but only briefly 
examined the effect of modulation on breaking waves. They showed a considerable 
decrease in the average breaking wave height as the modulation wavelength is in- 
creased. Figure 11 shows a limiting breaking wave from our spectral algorithm that 
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FIGURE 11. Breaking periodic wave with 10 % initial modulation: - - - -, initial wave profile 
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has a 10% modulation with a wavelength twice that of the primary wave. This is 
the easiest long-wave disturbance to model using a periodic algorithm and is the 
wavenumber that Longuet-Higgins (1978) found to be most unstable. The problem is 
now made 4n-periodic. 

Specifically, the initial conditions we apply are those of (2.4) except that a is a 
‘slowly’ varying function of x. For figure 11, a = a’(1 + Pcos fx), where a’ = 0.23 
and /3 = 0.10. The initial wave profile is significantly to the left of the last three 
wave profiles before breaking because the long time to breaking (t = 97.6) allows 
for a significant amount of wave drifting. From this simple example, we see that a 
10 % modulation of the initial conditions causes an approximately 20 YO reduction in 
the initial size of a wave that breaks (a = 0.28 is reduced to 0.23). However, locally 
examining the wave at breaking yields y,,, - ymin = 0.64 (using the average of the 
trough heights before and after the crest), within the scatter of the breaking criteria 
for unmodulated waves. This peak-to-peak criteria is 20 YO lower than the average of 
experimental waves (to be shown in 0 5). However, the potential energy (as computed 
from the average of the last two waves) is 0.04, within 3 YO of the average potential 
energy for breaking wave experiments (also shown in § 5 ) .  This shows again that 
the potential energy is a better criterion for breaking than the wave slope. We are 
continuing to perform a more extensive computational study of modulated waves. 

We also expect that reflection from the beach could cause smaller-amplitude waves 
to break. These reflections are modelled by applying the following free-surface initial 
conditions : 

where v is the reflection coefficient, v = 1 corresponds to 100 % reflection or standing 
waves. Figure 12 shows that, contrary to the the effect of modulation, a 10 YO reflection 
coefficient only modifies the initial conditions for breaking by approximately 5 % 
(a = 0.28 is reduced to 0.265). The plots of ym,, - ymi, and RMS are qualitatively 
similar to those of figure 4(a,b). 

y = a (1 + v)sinx and = a (1 -v)cosx, (4.3) 

8 F L M  278 
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FIGURE 12. Breaking wave with reflection reflection coefficient is 10 % with initial amplitude 
a = 0.265: 9 ~ m x - Y r n i n ; - - -  , V , potential energy. 

5. Comparison with convergent-channel experiments 
The Naval Research Laboratory (NRL) experiments discussed in this section were 

conducted in a channel 30 m long and 1.3 m wide at the wavemaker with about 
1.0 m mean water depth. The experimental procedures are described by Ramberg et 
al. (1985) and Ramberg & Griffin (1987). The channel was fitted with a convergent 
section with a rate of 1:16. This allowed the initially time-periodic waves (with 
prescribed frequency and amplitude) to grow into steep, asymmetric waves which 
often evolved into spilling and plunging breakers. Previous breaking wave experiments 
in a wave channel with a convergent section had been conducted and reported by 
Van Dorn & Pazan (1975). 

Wave heights were measured with capacitance wave probes. The lengthscale for 
the experiments was g( T/271)~ ,  such that the non-dimensional wavelength of a linear 
wave was 271, in accordance with the periodic computations. 

The location of wave breaking was established visually during the experiments as 
the position along the convergent channel where the sharp wave crests were first 
perceived to be ‘tripping’ into a spilling or plunging mode (where we first observed 
an increase in the crest fluid velocity over that of the travelling waveform). These 
locations were recorded and later compared to the positions where the measured vari- 
ation of the average wave height fl exhibited a transition from growth to attenuation 
along the channel. In all the cases compared, there was good agreement between 
these two estimated locations. Typical examples of spilling and plunging breakers are 
given in the photographs in Ramberg & Griffin (1987). 

Two hundred equally spaced temporal measurements of wave height were taken over 
eight wavemaker periods with two probes placed 3.0 m apart. These measurements 
were repeated sequentially over twenty-four spatial locations. 

It is often difficult to determine the breaking location, especially when breaking is 
intermittent. Figure 13 shows how the time spectra can help determine occurrences 
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where the 8 is in the denominator since data were taken during eight cycles of the 
wavemaker motion at each location. Figure 13 plots the magnitude lbkl  us. k for a 
breaking and non-breaking wave. Both have the same magnitude at the prominent 
peak at the primary frequency k = 8. When breaking occurs, the higher harmonics 
are much more pronounced. Also, the subharmonics are lower - indicating less 
wave modulation during breaking in these examples. This may be caused by the 
suppression of the highest waves by breaking. Although there is great variability in 
the spectra, breaking waves generally tend to have larger superharmonics and smaller 
subharmonics than comparable non-breaking waves. 

At each location, for each wavemaker period, maximum and minimum wave heights 
were determined using quadratic interpolation. The mean and standard deviation of 
the non-dimensional peak-to-peak height, H, were determined for the eight cycles 
at each location. The potential energy of the experimental waves was computed by 
integrating the square of the height using Simpson’s rule for six to eight full wave 
periods, as determined by consecutive crossings of the average datum height. After 
computing the mean potential energy, the standard deviation of potential energy 
between full wave periods was computed. 

The average potential energy V values for all data (breaking and non-breaking) 
are shown in figure 14 as a function of the non-dimensional growth rate. The growth 
rate was determined from (7) even though some data were taken just into the non- 
convergent portion of the channel as described by Ramberg et al. (1985). Those 
waves determined to be at the point of incipient breaking are marked with closed 
symbols. The general trend of steeper breaking waves occurring for higher growth 

8-2 
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FIGURE 14. Potential energy for all data (experiments from Ramberg et al. 1985, 1987) 

(solid symbols denote incipient breaking waves). 

rates is indicated by the larger breakers found further down the channel where the 
channel width is small. 

A wide range of wave heights at the onset of breaking is shown in Schultz, Griffin 
& Ramberg (1987), Ramberg & Griffin (1987), and Bonmarin (1989) for recent 
investigations of deep water waves. The data from all of the experiments use a 
crest-to-preceding-trough value for H .  The wave heights measured by Ochi & Tsai 
(1983) for the breaking of steep nonlinear waves in a uniform channel cover the range 
gT2 = 200 to 800 cm, while the wave heights measured in the NRL experiments 
cover the range of gT2 = 550 to 1100 cm. The wave heights measured by Duncan 
(1983) are between g T 2  = 100 and 400 cm and those measured by Bonmarin & 
Ramamonjiarisoa (1985) are between gT2  = 350 and 650 cm. The latter experiments 
have recently been examined in more detail (Bonmarin 1989). These experiments 
were conducted to measure the unsteady breaking of waves in a uniform channel, 
while in the experiments of Duncan the steady breaking waves were generated by 
towing a hydrofoil through still water at various submergence depths. Above a critical 
submergence depth of the hydrofoil, wave breaking occurred spontaneously (Duncan 
1983). 

Schultz et al. (1987) and Ramberg & Griffin (1987) found that the dimensional 
peak-to-peak measurement of H for breaking waves was equal to a mean distribution 
with the wave period of 0.021gT2, corresponding to H = 0.83 in the present scaling 
as noted in figure 15(a). The Stokes steepness of 0.027gT2 represents an upper bound 
for all measurements of wave breaking (although unusual circumstances, such as high 
energy input, could cause steeper breaking conditions). This figure shows that H 
increases with the growth parameter y, as predicted in figure 6. These predictions are 
higher than the experimental data - presumably owing to three-dimensional, viscous, 
and wave reflection and wave modulation effects in the experiments. The least-squares 
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FIGURE 15. Breaking criteria applied to incipient breaking wave experiments from Ramberg et al. 
(1985, 1987): (a) peak-to-peak height, (b)  RMS height. 

linear fit of the breaking data in figure 15(a) is given by 

H = 0.65 + 5.7~ . (5.2) 
The standard deviation about this curve is &7 % compared to +I5 % peak-to-peak 

variation for the entire data set of figure 15(a). 
The computations (e.g. figures 4b, 8c, 12) show that potential energy is ‘better 

behaved’ than the peak-to-peak (steepness) values. To check this for the experimental 
data, the corresponding V ,  or actually the RMS wave height, for breaking waves is 
shown in figure 15(b). A least-squares straight line fit for these data is 

RMS = 0.237 + 0.89~. (5.3) 

The RMS deviation from the linear fit is f6 YO. Hence, the RMS criterion for breaking 
is only marginally better than the peak-to-peak counterpart. The slope of the RMS 
curve fit is smaller, indicating that the RMS criterion is less sensitive to the growth 
rate. Also, the RMS wave height reduces scatter in the standard deviation of the 
measurement at one location. At each breaking event location, standard deviations 
of H and the RMS wave height for the six to eight cycles are calculated. The mean of 
these standard deviations is 3.2 YO for H = y,, - ymin and 2.7 YO for the RMS height. 

Comparisons of the experimental wave breaking location to the computations 
showed reasonable agreement (within 30 YO) of the computed time of breaking mul- 
tiplied by the group velocity, when a was chosen from linear wavemaker theory. 

6. Comparison with wave packet breaking experiments 
Recent experiments using focusing of wave packets (Peltzer, Griffin & Schultz 

1994) are now analysed for comparison of breaking criteria. Rapp & Melville (1989), 
Bonmarin (1989) and Ochi & Tsai (1983) have also experimented extensively with 
breaking wave packets. Dommermuth et al. (1988) perform two-dimensional simula- 
tions of one event of a breaking wave packet with good comparison to experimental 
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E RMS 

Experimental mean 0.299 0.186 
Experimental standard deviation (YO) 13.8 7.6 
Prediction 0.40 0.195 

TABLE 4. Properties of incipient breaking wave packets 

Predicted/experimental comparison (%) 25 5 

results. Newer computations by Beck, Lao & Lee (1993) show nearly identical results 
using far less computer resources, but still too prohibitive to study many cases. 

Table 4 shows the average of the crest front steepness E (defined by Bonmarin 1989 
and shown in figure 3c) and RMS of the average of the incipient breaking waves for 
the table 2 of Peltzer et al. (1994). We see that RMS is a more reliable and consistent 
criterion than a steepness criterion for breaking inception. The difference between the 
scatter of the two criteria for this example is significantly larger than the convergent- 
channel experiments. This is especially beneficial for the wave packet criterion 
because the RMS wave height can be predicted more directly and accurately than the 
wave steepness from simple group velocity considerations. Certainly, these are not 
spatially periodic waves and hence a criterion not based on wavelength is desirable 
- especially when the number of waves in a packet can change instantaneously. 
A potential energy per unit surface area criterion appears more consistent than a 
steepness criterion; however the potential energy or the RMS still uses a wavenumber 
(the local wavenumber measured at the breaking location for results in table 4) for 
non-dimensionalization. The refinement of the breaking criterion needs further study 
for this case. 

7. Concluding remarks 
Computations demonstrate that the potential energy of surface gravity waves is a 

better criterion for the onset of breaking for steep nonlinear waves than the wave 
slope. The computed wave height or steepness appears to have more erratic variations 
in time than the potential energy. 

There are three experimental indications that the square root of the potential energy 
is better than the peak-to-peak wave height (or steepness) criterion in predicting 
the onset of breaking events. These are: (i) a better least-squares fit with wave 
channel location x, with half the scatter compared to that given by the peak-to-peak 
correlation, (ii) a smaller percentage standard deviation around the mean value at 
an individual location (breaking or non-breaking), and (iii) a smaller percentage 
variation of individual breaking events from an average breaking criterion. 

Breaking criteria (peak-to-peak wave height or potential energy) depend on the 
energy input rate to the wave system, with the smallest values occurring when the 
energy input rate is small and spilling breakers are expected. A smooth transition to 
plunging breakers occurs (as conjectured by Longuet-Higgins & Cokelet 1976) for 
bigger waves that can be formed by a larger energy input rate. The dependence on 
the energy input rate further explains the scatter of breaking criteria derived from the 
convergent channel experiments. We have also found from experiments that breaking 
waves enhance the superharmonic and suppress the subharmonic frequencies. 

Continuing studies show that the peak-to-peak wave heights and potential energy 
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that can be sustained without breaking are relatively independent of the method of 
wave formation. We find that the computations tend to show a higher breaking 
criterion (peak-to-peak wave height or potential energy) than that indicated by the 
experiments. This difference can be lessened by modelling the wave modulation and, 
to a lesser degree, wave reflection that are inherent in any experiment. 
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